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Abstract

A modified elliptic Lindstedt–Poincar!e method is presented for the steady state analysis of strongly non-
linear oscillators of the form .x þ c1x þ c3x3 ¼ ef ðx; ’xÞ; in which a new parameter a ¼ aðeÞ is employed such
that the value of a is always small regardless of the magnitude of the original parameter e: Therefore, the
above strongly non-linear oscillators with large parameter e is transformed into a small parameter system
with respect to a:
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Over the last century many researchers have devoted their attention to the study of approximate
analytical solutions to the non-linear oscillator equation

.x þ x ¼ ef ðx; ’xÞ; ð1Þ

where e is a small positive parameter and f is a polynomial function of its arguments. The classical
techniques for solving Eq. (1) include the L–P method, the Krylov–Bogoliubov–Mitropolsky
(KBM) method and the multiple time scales (MTS) method, as described by Nayfeh [1] and
Mickens [2]. However, these classical perturbation methods traditionally are restricted to solving
problems with weak non-linearity. Mickens and Oyedeji [3] investigated a new class of non-linear
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oscillator equation

.x þ x3 ¼ ef ðx; ’xÞ ð2Þ

by using the harmonic balance (HB) method and the slowly varying amplitude and phase method
with circular functions. Following the Mickens techniques, Yuste and Bejarano [4] also
investigated Eq. (2) but adopted Jacobian elliptic functions instead of circular functions. The
accuracy of the elliptic functions method is obviously higher than that of the circular functions
method. Recently some researchers presented several techniques for the more general case of the
form

.x þ c1x þ c3x3 ¼ ef ðx; ’xÞ: ð3Þ

For example, Margallo et al. [5,6] presented an elliptic HB method; Yuste and Begarano [7]
developed an elliptic Krylov–Bogoliubov (KV) method; and Coppola and Rand [8] used an
elliptic averaging method. All the methods mentioned above have their own advantages to obtain
approximate analytical solutions. However, most of them only give first order approximate
solutions which are expressed as x ¼ A0epðot; kÞ; where A0;o; k are constants and ep denotes a
convenient Jacobian elliptic functions. These solutions can give very good approximations when e
is a small value. However, when e is not a small one, they can have large unacceptable errors.

Recently, Chen and Cheung [9] have presented an elliptic perturbation method for studying the
oscillator Eq. (3), in which the Jacobian elliptic functions are employed instead of the usual
circular functions in the classical L–P perturbation procedure. The method give the periodic
solution generally by x ¼ A0epðot; kÞ;dt=dt ¼ oðtÞ ¼ o0 þ eo1ðtÞ and it is better than some other
elliptic methods.

Chen and Cheung [10] also presented an elliptic Lindstedt–Poincar!e method for studying the
oscillator Eq. (3), in which the Jacobian elliptic functions are used instead of the usual circular
functions in the classical L–P perturbation procedure. The method gives the periodic solution
generally by x ¼ A0epðot; kÞ þ ex1ðot; kÞ; o ¼ o0 þ eo1 and improves the solution by the first
order correction x1: So it is more accurate than other elliptic methods which give only first order
solution. This method gives very good approximate analytical solutions when e is a small value.
However, when e becomes quite large, the approximations does not agree with those of the R–K
method very well.

In this paper, a new modified elliptic perturbation method is presented for studying the
oscillator Eq. (3). In this procedure a parameter a ¼ aðeÞ is defined which enables a strongly non-
linear system corresponding to the original parameter e to be transformed into a small parameter
system with respect to a: Applying the elliptic Lindstedt–Poincar!e method to the new system
respect to a; we can improve the accuracy of the solution. In order to assess the applicability of the
proposed method, a numerical comparison has been made between the present method, the
elliptic Lindstedt–Poincar!e method and the R–K integration method.

2. The modified elliptic Lindstedt–Poincar!e method

Consider the equation

.x þ c1x þ c3x3 ¼ ef ðx; ’xÞ; ð4Þ
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where dots denote derivatives with respect to time t: Let

t ¼ ot;

where o is the non-linear frequency and will be determined later. Then Eq. (4) becomes

o2x00 þ c1x þ c3x3 ¼ ef ðx;ox0Þ; ð5Þ

in which primes denote derivatives with respect to the new variable t: Let

o ¼
XN
n¼0

enon; ð6Þ

then define a new parameter

a ¼
e

o0 þ e
ð7Þ

such that

e ¼
o0a
1� a

: ð8Þ

Then aA½0; 1Þ; when eA½0;þNÞ; so e can be written as

e ¼ o0að1þ aþ a2 þ a3 þ?Þ: ð9Þ

Substituting Eq. (9) into Eq. (6) we can get that

o ¼ o0 þ ao0o1 þ a2o0ðo1 þ o0o2Þ þ a3o0ðo1 þ 2o0o2 þ o2
0o3Þ þ?: ð10Þ

Let

x ¼
XN
n¼0

anxnðtÞ; ð11Þ

expanding f ðx;ox0Þ in power series of e; substituting Eqs. (8), (10) and (11) into Eq. (5) and
equating the coefficients of powers of a yields the following equations:

a0: o2
0x00

0 þ c1x0 þ c3x3
0 ¼ 0; ð12Þ

a1: o2
0x00

1 þ ðc1 þ 3c3x2
0Þx1 ¼ o0 f ðx0;o0x0

0Þ � 2o2
0o1x00

0; ð13Þ

a2: o2x00
2 þ ðc1 þ c3x2

0Þx2 ¼o0 f ðx0;o0x0
0Þ þ o0 f 0

xðx0;o0x0
0Þx1 þ o2

0 f 0
’xðx0;o0x0

0Þðo1x0
0 þ x0

1Þ

� o2
0ðo

2
1 þ 2o1 þ 2o0o2Þx00

0 � 2o2
0o1x00

1 � 3c3x0x2
1; ð14Þ

in which f 0
x ¼ df =dx; f 0

’x ¼ df =d ’x:
Eq. (12) has an exact analytical solution which can be denoted by

x0ðtÞ ¼ A0epðt; kÞ; ð15Þ

where epðt; kÞ is one of convenient Jacobian elliptic functions snðt; kÞ; cnðt; kÞ and dnðt; kÞ
according to the type of Eq. (12) which is determined by the value of c1 and c3 (see Ref. [9]). A0

and k are constants to be determined later.
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Multiplying both sides of Eq. (13) by x0
0 and then integrating the equation, we obtain

o2
0½x

0
0x0

1 � x00
0x1�j

t
0 þ

Z t

0

½o2
0x000

0 þ c1x0
0 þ 3c3x2

0x0
0�x1 dt

¼ o0

Z t

0

f ðx0;o0x0
0Þx

0
0 dt� o0o1x02

0 j
t
0

� �
: ð16Þ

Differentiating Eq. (12) with respect to t leads to

o2
0x000

0 þ c1x0
0 þ 3c3x2

0x0
0 ¼ 0: ð17Þ

Note that x0 is a periodic function with period T (T is 4 K for snt and cnt or 2 K for dn t;K is the
first kind complete elliptic integral). x0

0;x
00
0 are also periodic functions with period 4 K: According

to our assumption, x1 is also a periodic function with the period 4 K: Then by letting t ¼ 4 K in
Eq. (16), we have Z 4K

0

f ðx0;o0x0
0Þx

0
0 dt ¼ 0: ð18Þ

A0 can be determined from Eq. (18).
It can be seen from Eq. (17) that x0

0 is a solution of the homogeneous part of Eq. (13).
Therefore, the particular solution of Eq. (13) can be expressed by the following equation
according to the theory of differential equations:

x1 ¼ x0
0

Z
1

x02
0

Z
x0

0

o2
0

½o0ð f ðx0;o0x0
0Þ � 2o0o1x00

0Þ� dt
� �

dt: ð19Þ

Here we ignore the initial conditions and the homogeneous solution in x1 since we concerned with
steady state solutions, in which the responses are frequently independent of the initial conditions
(see Ref. [11]). Note that

x0
0

Z
1

x02
0

Z
2o1x0

0x00
0

� �
dt ¼ o1x0

0t; ð20Þ

x0
0t is a secular term. It tends to infinity as t-N: In order to avoid this secular term, o1 is chosen

to eliminate the coefficient of x00
0 in the bracket on the right hand side of Eq. (19). If f ðx0;o0; x0

0Þ
does not contain the term x00

0 explicitly or implicitly then o1 ¼ 0:
One can continue the perturbation procedure to determine the next order solution x2 and o2: In

this paper we only compute x1 and o1 because the computation practices show that the solution
to the order ax1 is accurate enough.

3. A study of the three types of generalized Van der Pol oscillator

As an application of the modified elliptic L–P method, we study the limit cycles of the
generalized Van der Pol oscillator

.x þ c1x þ c3x3 ¼ eðc0 � c2x2Þ ’x: ð21Þ
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Here

f ðx0;o0x0
0Þ ¼ ðc0 � c2x2

0Þo0x0
0: ð22Þ

Obviously, f ðx0;o0x0
0Þ does not contain x00

0: According to the discussion in above section, we have
o1 ¼ 0: Therefore,

x1 ¼ x0
0

Z
1

x02
0

Z
x0

0

o0
f ðx0;o0x0

0Þ dt
� �

dt: ð23Þ

When e ¼ 0; the so-called generating equation can be divided into three types which have different
fundamental generating functions according to the value of c1 and c3 (see Ref. [9]).

3.1. Oscillator type I: c1 > 0; c3 > 0

For this type of oscillator, the generating function is taken as

epðt; kÞ ¼ cnðt; kÞ ð24Þ

so that the solution of Eq. (12) is

x0 ¼ A0cnðt; kÞ; ð25Þ

o2
0 ¼ c1 þ c3A2

0; ð26Þ

k2 ¼
c3A2

0

2o2
0

: ð27Þ

From Eq. (18), we get that A0 can be determined by the following equation:

c0IK
11 � c2A2

0IK
12 ¼ 0; ð28Þ

in which

IK
11 ¼

Z 4K

0

sn2t dn2t dt ¼
4

3k2
½k02K þ ð2k2 � 1ÞE�; ð29Þ

IK
12 ¼

Z 4K

0

sn2t cn2t dn2 t dt ¼
4

15k4
½k02ðk2 � 2ÞK þ ð2k4 þ k02ÞE�; ð30Þ

where E is the second kind complete elliptic integral.
Take the same procedure as in Ref. [10], we have

I1 ¼
Z

f ðx0;o0x0
0Þx

0
0 dt ¼

Z
ðc0 � c2A2

0cn2tÞo0A2
0sn2t dn2 t dt

¼o0A2
0ðC11snt cntþ C12snt3cntþ C13snt5 cnt

þ C14snt cnt dn tþ C15snt3cnt dn tþ?; ð31Þ

x1 ¼ x0
0

Z
1

o0x02
0

I1 dt ¼ x0
0

X5

j¼1

C1jIS1j þ?; ð32Þ
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x0
1 ¼ x00

0

X5

j¼1

C1jIS1j þ x0
0

X5

j¼1

C1jSC1j þ?: ð33Þ

The coefficients C1j ðj ¼ 1;y; 5Þ are listed in Appendix A. The functions IS1j and SC1j are given
in detail in Appendix B.

3.2. Oscillator Type II: c1 > 0; c3o0

For this type of oscillator, the generating function is taken as

epðt; kÞ ¼ snðt; kÞ ð34Þ

so that the solution of Eq. (12) is

x0 ¼ A0snðt; kÞ; ð35Þ

o2
0 ¼ c1 þ 1

2
c3A2

0; ð36Þ

k2 ¼ �
c3A2

0

2o2
0

: ð37Þ

From Eq. (18), we get that A0 can be determined by the following equation:

c0IK
21 � c2A2

0IK
12 ¼ 0; ð38Þ

in which

IK
21 ¼

Z 4K

0

cn2t dn2t dt ¼
4

3k2
½ð1 þ k2ÞE � k02K �: ð39Þ

Following the procedure of Ref. [10], we have

I2 ¼
Z

f ðx0;o0x0
0Þx

0
0 dt ¼

Z
ðc0 � c2A2

0sn2tÞo0A2
0cn2t dn2t dt

¼o0A2
0ðC21snt cntþ C22snt3cntþ C23snt5cnt

þ C24snt cnt dn tþ C25snt3 cnt dn tþ?; ð40Þ

x1 ¼ x0
0

Z
1

o0x02
0

I2 dt ¼ x0
0

X5

j¼1

C2jIS2j þ?; ð41Þ

x0
1 ¼ x00

0

X5

j¼1

C2jIS2j þ x0
0

X5

j¼1

C2jSC2j þ?: ð42Þ

The coefficients C2j ð j ¼ 1;y; 5Þ are listed in Appendix A. The functions IS2j and SC2j are given
in detail in Appendix B.
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3.3. Oscillator type III: c1o0; c3 > 0

For this type of oscillator, the generating function is taken as

epðt; kÞ ¼ dnðt; kÞ ð43Þ

so that the solution of Eq. (12) is

x0 ¼ A0 dnðt; kÞ; ð44Þ

o2
0 ¼

1
2

c3A2
0; ð45Þ

k2 ¼ 2 1þ
c1

c3A2
0

� �
: ð46Þ

From Eq. (18), we get that A0 can be determined by the following equation:

c0IK
31 � c2A2

0IK
12 ¼ 0; ð47Þ

in which

IK
31 ¼

Z 4K

0

sn2t cn2t dt ¼
4

3k2
½ð2� k2ÞE � 2k02K�: ð48Þ

Following the procedure of Ref. [10], we have

I3 ¼
Z

f ðx0;o0x0
0Þx

0
0 dt ¼

Z
ðc0 � c2A2

0 dn2tÞo0A2
0k4sn2t cn2t dt

¼o0A2
0k4ðC31snt cntþ C32snt3cntþ C33snt5cnt

þ C34snt cnt dntþ C35snt3cnt dntþ?; ð49Þ

x1 ¼ x0
0

Z
1

o0x02
0

I3 dt ¼ x0
0

X5

j¼1

C3jIS3j þ?; ð50Þ

x0
1 ¼ x00

0

X5

j¼1

C3jIS3j þ x0
0

X5

j¼1

C3jSC3j þ?: ð51Þ

The coefficients C3j ðj ¼ 1;y; 5Þ are listed in Appendix A. The functions IS3j and SC3j are given
in detail in Appendix B.

According to the discussion in Ref. [9], the value of A0 determined from Eq. (47) must satisfy
the condition

A2
0o�

2c1

c3
; ð52Þ

otherwise, there is no solution x0 ¼ A0 dnðtÞ: However, in this case Eq. (12) may have another
solution x0 ¼ A0cnðtÞ if A0 satisfy the condition

A2
0 > �

2c1

c3
: ð53Þ
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Of course, A0 in this course is determined from Eq. (38) and x1; x0
1 are determined from Eqs. (41)

and (42).

4. Examples

Example 1. Consider the equation

.x þ x3 ¼ eð1:2� x2Þ ’x: ð54Þ

This is a special case of the type I oscillator with c1 ¼ 0; c3 ¼ 1; c0 ¼ 1:2 and c2 ¼ 1 so the first
perturbation solution is x0 ¼ A0cnðt; kÞ: The limit cycle phase portraits for the case e ¼ 0:1; e ¼
0:5; e ¼ 1:0 are shown in Fig. 1.

Example 2. Consider the equation

x
::
þ2x � 0:45x3 ¼ eð1 � x2Þ x

:
: ð55Þ

This is a type II oscillator with c1 ¼ 2; c3 ¼ �0:45; c0 ¼ 1 and c2 ¼ 1 so the first perturbation
solution is x0 ¼ A0snðt; kÞ: The limit cycle phase portraits for the case e ¼ 0:1; e ¼ 0:4; e ¼ 0:8 are
shown in Fig. 2.
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It can be seen from Figs. 1 and 2 that when e is small both the results of our present method and
the elliptic L–P method are nearly identical with the R–K solutions. As e increases, the present
method agrees with the R–K method better than the elliptic L–P method does. The reason is that
in the present method we use a new parameter a ¼ aðeÞ instead of the original parameter e thus the
error is decreased.

5. Conclusions

1. A modified elliptic Lindstedt-Poincar!e method is presented. It is an efficient method to
determine the limit cycles shapes of certain strongly non-linear oscillators in which the periodic
solution of the generating equation can be expressed by Jacobian elliptic functions exactly.

2. The comparison between the elliptic Lindstedt–Poincar!e method and present method shows
that the approximations of both methods are in good agreement with those of the R–K method
when e is small. When e becomes large, the present method improves the accuracy of the
approximations.
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Appendix A

1. The coefficients cEj and ctj ðj ¼ 0; 1; 2; 3Þ occurring in the following Cij ði ¼ 1; 2; 3; j ¼
0; 1; 2; 3Þ are

cE0 ¼ 1� 1
4

k2 � 3
64

k4 � 5
256

k6 þ?; cE1 ¼ 1
4

k2 þ 3
64

k4 þ 5
356

k6 þ?;

cE2 ¼ 1
32

k4 þ 5
384

k6 þ?; cE3 ¼ 1
96

k6 þ?;

ct0 ¼ 1 þ 1
4

k2 þ 9
64

k4 þ 25
256

k6 þ?; ct1 ¼ � 1
4

k2 � 9
64

k4 � 25
256

k6 þ?;

ct2 ¼ � 3
32

k4 � 25
384

k6 þ?; ct3 ¼ � 5
96

k6 þ?:

2. The coefficients C1j ðj ¼ 0; 1;y; 5Þ occurring in Eqs. (31)–(33) are

C1j ¼
c0

3k2
½ð2k2 � 1ÞcEj þ k02ctj� � A2

0

c2

15k4
½2ðk4 þ k02ÞcEj þ k02ðk2 � 2Þctj�; j ¼ 0; 1; 2; 3;

C14 ¼ �
c0

3
þ

c2

15k2
A2

0ð1þ k2Þ; C15 ¼ �
c2

5
A2

0:

3. The coefficients C2j ð j ¼ 0; 1;y; 5Þ occurring in Eqs. (40)–(42) are

C2j ¼
c0

3k2
½ð1 þ k2ÞcEj � k02ctj� � A2

0

c2

15k4
½2ðk4 þ k02ÞcEj þ k02ðk2 � 2Þctj�; j ¼ 0; 1; 2; 3

C24 ¼
c0

3
þ

c2

15k2
A2

0ð1þ k2Þ; C25 ¼ �
c2

5
A2

0:

4. The coefficients C2j ð j ¼ 0; 1;y; 5Þ occurring in Eqs. (49)–(51) are

C3j ¼
c0

3k2
½ð2� k2ÞcEj � 2k02ctj� � A2

0

c2

15k4
½2ðk4 þ k02ÞcEj þ k02ðk2 � 2Þctj�; j ¼ 0; 1; 2; 3;

C34 ¼ �
c0

3
þ

c2

15k2
A2

0ð1þ k2Þ; C35 ¼ �
c2

5
A2

0:

Appendix B

1. The functions IS1j and SC1j occurring in Eqs. (31)–(33) are

SC11 ¼
cnt

snt dn2 t
; IS11 ¼ 1

2
ln

1� dn t
1þ dn t

þ
1

dn t
;

SC12 ¼
snt cnt
dn2 t

; IS12 ¼
1

k2 dn t
;

SC13 ¼
sn3t cnt
dn2 t

; IS13 ¼
1

k4

1

dn t
þ dn t

� �
;
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SC14 ¼
cnt

snt dn t
; IS14 ¼ ln

snt
dn t

;

SC15 ¼
snt cnt
dn t

; IS15 ¼ �
1

k2
lnðdn tÞ:

2. The functions IS2j and SC2j occurring in Eqs. (40)–(42) are

SC21 ¼
snt

cnt dn2 t
; IS21 ¼

1

2k02

1

k0 ln
dn tþ k0

dn t� k0 �
2

dn t

� �
;

SC22 ¼
sn3t

cnt dn2t
; IS22 ¼

1

2k02

1

k0 ln
dn tþ k0

dn t� k0 �
2

k2 dn t

� �
;

SC23 ¼
sn5t

cnt dn2t
; IS23 ¼

1

2k02

1

k
; ln

dn tþ k0

dn t� k0 �
2

k4 dn t
�

2k02

k4
dn t

� �
;

SC24 ¼
snt

cnt dn t
; IS24 ¼

1

k02 ln
dn t
cnt

;

SC25 ¼
sn3t

cnt dn t
; IS25 ¼

1

k02

1

k2
lnðdn tÞ � lnðcntÞ

� �
:

3. The functions IS3j and SC3j occurring in Eqs. (49)–(51) are

SC31 ¼
1

snt cnt
; IS31 ¼ ln

1� dn t
snt

þ
1

k0 ln
dntþ k0

cnt
;

SC32 ¼
snt
cnt

; IS32 ¼
1

2k0 ln
dn tþ k0

dn t� k0;

SC33 ¼
sn3t
cnt

; IS33 ¼
1

k2
dn tþ

1

2k0 ln
dn tþ k0

dn t� k0;

SC34 ¼
dn t

snt cnt
; IS34 ¼ ln

snt
cnt

;

SC35 ¼
snt dn t

cnt
; IS35 ¼ �lnðcntÞ:
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